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Textbook wisdom on overfitting

1.5 * x
x %
1—~~ ® ‘_--—~N
e~ -
2 ’
\\ x ’
= 20 samples ¢ . -
n samples S K .
S .
N
> 0 S /,
A3 ’
> .
A
-
0.3 \\ * % d
~ * ,’
~ -,
& .-

0 0.2 0.4 0.6

0.8

* random x;,
Y; Noisy version

of f*(x;)



Textbook wisdom on overfitting

* random x;,
- = i . y; noisy version

. of f*(x)

. — predicted f(x)

polynomial fit
degreed =2

0 0.2 0.4 0.6 0.8 1



Textbook wisdom on overfitting

2
* random x;,
= 2 g . y; noisy version
®x %
of f*(x;)

n=20samples os . —— predicted f(x)

> 0

polynomial fit
degreed =2

0.6 0.8

0.4

0.2

Small models cannot fit perfectly: < cannot express function of interest (high statistical bias)



Textbook wisdom on overfitting

* random x;,
= = x y; noisy version

1=~ X ,—"‘x:: Off*(xi)

. —— predicted f(x)

polynomial fit
degreed =2

% 0.2 0.4 0.6 0.8 1

X

Small models cannot fit perfectly: < cannot express function of interest (high statistical bias)

« largely ignores noise — does not fluctuate a lot (small variance)
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Textbook wisdom on overfitting
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Double descent on neural networks

Classification using neural networks and Adam on CIFAR-10 with 15% additional label noise
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Double descent on neural networks

Classification using neural networks and Adam on CIFAR-10 with 15% additional label noise
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Obs. I: Second descent beyond interpolation

Classification using neural networks and Adam on CIFAR-10 with 15% additional label noise
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@ After interpolation threshold, we have a second “descent” (double descent) for interpolators
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Obs. Il: Harmless interpolation for large models
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Obs. Il: Harmless interpolation for large models

Classification using neural networks and Adam on CIFAR-10 with 15% additional label noise
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@ For large models, interpolation is not worse than regularization (harmless interpolation)
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Obs. lll: Good generalization for large models

Classification using neural networks and Adam on CIFAR-10 with 15% additional label noise
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@ For large models, we achieve reasonably good test accuracy
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What the field set out to understand...

Try to understand when the following happens: As overparameterization T:

@ Second “descent” as model size grows

. N
variance decays

@ Harmless interpolation for large models, / when is this

\ the case?

?

grows beyond interpolation threshold

i.e. interpolation ~ opt. regularization

@ Good test performance for large models, :
«— bias stays low

close to best possible prediction error o




Which factors govern...

when we have this picture...

test error

overparameterization
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when we have this picture...
test error

[

overparameterization

test error

> ...rather than this picture ?
overparameterization /
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Seeking answers using theoretical analysis...

Neural network interpolators

* feature learning with
overparameterization £

e.g. width of hidden layers

e found w/ 1st order methods to

minimize non-convex losses

 using p nonlinear features w/
overparameterization £

number of features p > n

» found w/ 1st order methods

to minimize a convex loss

- Kernel / random features “ Linear interpolators

« using d input features with
overparameterization £

dimension d > n

e found w/ 1st order methods

to minimize a convex loss

complexity to analyze model
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Benefits of overparameterization and interpolation in linear models

We run gradient descent on ||[Y — X6||3 at 6p =0 for Y = X6* + W
(where X, W are comprised of iid standard Gaussian entries)

n = 500,0% = é;,0% = 0.25

— At convergence
- - Early stopped

Harmless interpolation

@ Second Descent
\@ for large d/n

after interpolation
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X# =Y has infinitely many
interpolating solutions!

Solutions of study today:
The minimum-lp-norm interpolator

./g\p = argmin||f||, subject to X0 =Y.
(beginning with p = 2)

Error metric is mean-squared-error: &g :=E [(XT(/G\ — 0*))2]
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Analysis framework

Non-asymptotic: we consider d = n”, > 1 (or d > n) and state results as:
« Consistency: goal is to have &ygg = Oasn — oo

« Rates: upper and lower bounds on &g as a function of n that match up to
universal constants (not depending on n, d, 6*, %)

An alternative asymptotic analysis framework (not the focus of this tutorial):
d

Considersd «xn,— =y.
n

Exact error expressions derived as a function of y as n,d — oo together.



Why these types of “low-norm” interpolators?
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Why these types of “low-norm” interpolators?

Popular optimization algorithms converge to “low-norm” solutions!

Mirror descent on squared loss, Coordinate descent/least-
Potential = H . Hp angle regression

(Gunasekar et al,

2018) (Efron et al, 2004)

\4

Minimume-Ip- Minimum-11-norm

interpolation

norm interpolation

(/9\p = arg min||f||, 0, = arg min||0||;
subject to subject to
X'0=Y;,ic[n]. X'0=Y;,ic[n].

Implicit bias theory is a useful “sanity check” but not the full picture: do these solutions always generalize well?
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Recall: what was observed for min-12-norm interpolator

n = 500,0* = é;,0% = 0.25

— At convergence
"7 Early stopped

Harmless interpolation

@ Second Descent

after interpolation

for large d/n

y =d/n

(1) and (2) are implied by variance reduction with increased overparameterization!

02n

Theorem (isotropic covariance)*: Variance term =< 7
*included in results of Hastie et al (2022), Bartlett et al (2020), Muthukumar et al (2020)



Plan today...

Part I: For linear regression, we discuss how

« Two factors can govern variance decay vs. bias increase
« For fixed interpolator, certain problem instances/distributions are more benign

« For fixed problem instance, certain interpolators generalize better

Part ll: For classification, we discuss the
« effect of loss function choices
« implicit bias of optimization algorithms for neural networks

« generalization of neural networks on noisy, high-dimensional data
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« Step 1: minimum-|2-norm interpolator can be expressed in closed form

=X (XX Y =/ XT(XX")'X0* HXT(XXT)"'W

Ideally: have this be
close to O (error = variance)

« Step 2: variance term can also be expressed in closed form
Variance = || X' (XX ") " 'W|Z =W ' (XX )1 XX"(XX")"'W

=W (XX")'w

Note: this calculation is simplified for isotropic data covariance, but works more generally (Bartlett et al, 2020)
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Variance reduction: main proof ideas

- Step 3: data is approximately orthogonal when d > n (with high prob.)
(X;, X;)~0fori##jand || X;]|5~d

— XX' ~dl Total
- - HWH% / “noise energy”
— Variance = W' (XX ')7'W ~ —
N TLO'2
T d

Intuition: noise energy is “spread out” along d feature dimensions, contributes more harmlessly as d increases

Note: can show corresponding precise results when d « n, d,n — oo (Hastie et al, 2022)
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So is min-12-norm interpolation always a good idea?

Interpolator 6, = arg min||f||; subject to X0 =Y vs.

_ b s 2
regularized estimator: arg min||X6 — Y|3 + A||0[|3 n =1500,0" =é;,0° =0.25

A A ——MSE
—— Interpolating Bias
--- Regularized Variance
als
=
N
I
(< \
m Vo
o/
L /N Bayes error
= RN
1 2 3 ; 5 6 1 é 3 Ali é é
y =d/n y =d/n

@ second descent ( @ harmless interpolation { @good generalizationx

Core issue: bias increases with d, eventually dominates
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Issues with isotropy and min-12 inductive bias

Recall: minimum-I2-norm interpolator can be expressed in closed form

=X (XX Y =[XT(XX")'X0* + XT (XX ") 'W

Bias = |(X' (XX ")™1X — 1)6*||3

Theorem*: Bilas =< (1 — %) HH*H%

Intuition: under isotropy, true parameter energy also spread out across d features!

*included in results of Hastie et al (2022), Bartlett et al (2020)
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Isotropy and min-12-norm bias visualized at feature-by-feature level

Theorem: Bias =< (1 — %) ||6)*H§

Intuition: under isotropy, true parameter energy also spread out across d features

(k = 500, n = 5000, d = 30000)

Canonical setting: k-sparse signal = 1| true signal
(@ 27
Y =XT0"+W © (1) Signal attenuation
0> # 0 for j € [k],0 otherwise t:_:>° ’
E<n § |
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Feature index |

This signal attenuation observed in classical statistical signal processing (e.g. Chen, Donoho, Saunders 2001)



Isotropy and min-12-norm bias visualized at feature-by-feature level

Theorem: Bias =< (1 — %) ||6)*H§

Intuition: under isotropy, true parameter energy also spread out across d features

(k = 500, n = 5000, d = 30000)

Canonical setting: k-sparse signal ~ || true signal
(S 7
—l_ 1 ° .
Y =X'"0"+ W £ Signal attenuation

* . . () 0
0> # 0 for j € [k],0 otherwise ke

N
E<Ln §

Core issue for bias: | /0\j| < |¢9].*| for all j € [k]! O 5000 10000 15000 20000 25000 30000

Feature index |

This signal attenuation observed in classical statistical signal processing (e.g. Chen, Donoho, Saunders 2001)



Plan today...

Part I: For linear regression, we discuss how
« variance can decay as overparameterization increases (simple math)

« Two factors can govern variance decay vs. bias increase

« For fixed problem instance, certain interpolators generalize better

Part Il: For classification, we discuss the
« effect of loss function choices
« implicit bias of optimization algorithms for neural networks

« generalization of neural networks on noisy, high-dimensional data
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Anisotropy to the rescue: “upweighting” features aligned with signal

RI; 0
0 I;

Effective “upweighting” on top k features (k =500, n = 5000, d = 30000, R = 100)

200
4 -

« Aspecialcase Y = [ . R > 1 (spiked-covariance)

Signal
.1 | preservation
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Feature magnitude
Coeff value 63 ;
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Anisotropy to the rescue: “upweighting” features aligned with signal

« Aspecialcase Y = [ng I 0 . R > 1 (spiked-covariance)
d—k

Effective “upweighting” on top k features (k = 500, n = 5000, d = 30000, R = 100)
—8 175 :\? : Signa|
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Feature index | ~
Low bias iff GJ- ~ 9J* for all j € [k]

n
Intuition: under near-orthogonality, 6; « Z y;X; j - attenuation mitigated for larger R as x; ; ~ #(0,R) for j € [k]

i=1



A sensible model for 12: the spiked-covariance ensemble
Spiked covariance: (n, d, k, R)

Y, = diag(A) =

Feature magnitude (\;)

n d>n

Feature index (j)

Conditions for general anisotropic covariances in terms of “effective ranks” by Bartlett et al (2020)



A sensible model for 12: the spiked-covariance ensemble
Spiked covariance: (n, d, k, R)

Y, = diag(A) =

Feature magnitude (\;)

" d>n
+—> . .
(sparsity level) L < n Feature index (j)

Conditions for general anisotropic covariances in terms of “effective ranks” by Bartlett et al (2020)



A sensible model for 12: the spiked-covariance ensemble

= Spiked covariance: (n, d, k, R)
o
©
2
'c

S = diag(A) = &

= diag o Ratio R > 1
o
5 :
m 1
w 1
L .
n d>n

(sparsity level) L < n Feature index (j)

Conditions for general anisotropic covariances in terms of “effective ranks” by Bartlett et al (2020)
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2; Spiked covariance: (n, d, k, R)
— Additionally assume
B 0% =0forall j=k+1,....d
3 J
c
Y =diag(A) = 3 Ratio B> 1
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- | 1
) 1
© 1
o :
L '
— d>n

(sparsity level) L < n Feature index (j)
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(sparsity level) L < n Feature index (j)
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A sensible model for 12: the spiked-covariance ensemble

;; Spiked covariance: (n, d, k, R)
— Additionally assume
5 0% =Oforallj=k+1,....d
-} J
]
' ‘
Y =diag(A) = 3 Ratio B> 1
€ atio >
o
= 1
e 1
© 1
o :
L '
— n d>n

(sparsity level) L < n Feature index (j)

Will always achieve Also achieves Bias - 0 asn,d — o0

. , d
Variance — O as n,d — oo: orovided that R > —

Noise hidden along (d-k) directions! n

Conditions for general anisotropic covariances in terms of “effective ranks” by Bartlett et al (2020)
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Summary: Uniform benefits of overparameterization with spiked covariance
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Summary: Uniform benefits of overparameterization with spiked covariance
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For fixed interpolator...
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test error
For a fixed distribution (e.g. isotropic),
e—— different algorithms — different interpolators #
e o T - _ ¢

—> how do bias and variance behave?
overparameterization



Plan today...

Part |: For linear regression, we discuss how

* variance can decay as overparameterization increases (simple math)
« Two factors can govern variance decay vs. bias increase
« For fixed interpolator, certain problem instances/distributions are more benign

« Forfixed problem instance, certain interpolators generalize better

Part Il: For classification, we discuss the
« effect of loss function choices
« implicit bias of optimization algorithms for neural networks

» generalization of neural networks on noisy, high-dimensional data
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Implicit bias = inductive bias

has

towards

minimizing loss

e.g. 1st order method

on ||y —XWI|§

v

certain interpolator

e.g. forp € [1,2]
w, = argmin,, ||w||p

s.t.y = Xw

has certain strength of
inductive bias

towards :
certain structure

v

e.g. sparsity,
invariances

Next: Recall how as p = 1 has an inductive bias towards sparse solutions
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Recall: Inductive bias for sparse linear models

isotropic

«

Fixed distribution: y; = (w*, x;) + &; with sparse w*, i.e. ||W||0 =k < d, i.i.d. noise ¢ and x; ~ N(0,])

Min-£,-norm interpolation Ww,, = argmin,, ||W||p s.t.y = Xw

* small ||w||1—norm encourages sparsity = aligns with w* structure (strong inductive bias)

. — does not restrict search space in right way! (weak inductive bias)

subspace of all
linear interpolators
{fw: Xw =y =Xw*}
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fori =1,..,nsamples and input and parameter dimension d » n
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Recall: small £;-norm — small statistical bias

Fixed distribution: y; = (w*, x;) + &; with sparse w*, i.e. ||W||0 =k < d, i.i.d. noise ¢ and x; ~ N(0,])

fori =1,..,nsamples and input and parameter dimension d » n

Noiseless Basi o _ “ || f vy Perfect recovery
y = Xw* asis pursuit: w; = argmin,, [|wl| s.t. y = Xw w.h.p.forn~klogd
l when observations are noisy
Estimation error achieves
Nois R _ minimax optimal rate
B Xw*y+ ¢ Lasso: w; = argmin,, |ly — Xw||3 + A||lwll; k log d P
y = 0 ( ) for best 1

e.g. BP: [Candes, Tao ‘05, Donoho ‘06], Lasso: [Bunea, Tsybakov, Wegkamp ‘07, vandeGeer '08], [Wainwright ‘09]



Recall: small £;-norm — small statistical bias

Fixed distribution: y; = (w*, x;) + &; with sparse w*, i.e. ||W||0 =k < d, i.i.d. noise ¢ and x; ~ N(0,])

fori =1,..,nsamples and input and parameter dimension d » n

Noiseless Basi o _ “ || Ly Perfect recovery
y = Xw* asis pursuit: w; = argmin,, [|wl| s.t. y = Xw w.h.p.forn~klogd
l when observations are noisy
Estimation error achieves
Nois R _ minimax optimal rate
B Xw*y+ ¢ Lasso: w; = argmin,, |ly — Xw||3 + A||lwll; k log d P
y= 0 ( ) for best 1

‘ p = 1 has a strong inductive bias towards sparse solutions = small statistical bias!

e.g. BP: [Candes, Tao ‘05, Donoho ‘06], Lasso: [Bunea, Tsybakov, Wegkamp ‘07, vandeGeer '08], [Wainwright ‘09]



Recall: small £;-norm — small statistical bias

Basis pursuit: W; = argmin,, ||W||1 s.t.y =Xw

+7

y=Xw*+¢

Previously unknown: prediction/estimation error of min-#; interpolation for noisy data
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overparameterization

variance

.\—<__=.¢ \_‘/

—

overparameterization

When interpolating noise,
how strong of an inductive bias *
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leads to good generalization



Inductive bias for noisy sparse linear models

Fixed distribution: y; = (w*, x;) + &; with sparse w*, i.e. ||W||0 =k < d, i.i.d. noise ¢ and x; ~ N(0,])

Min-£,-norm interpolation Ww,, = argmin,, ||W||p s.t.y = Xw

subspace of all
linear interpolators

w: Xw =y =Xw* + ¢}
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Fixed distribution: y; = (w*, x;) + &; with sparse w*, i.e. ||W||0 =k < d, i.i.d. noise ¢ and x; ~ N(0,])

Min-£,-norm interpolation Ww,, = argmin,, ||W||p s.t.y = Xw

* small ||w||1—norm encourages sparsity = aligns with w* structure (strong inductive bias)

. — does not restrict search space in right way! (weak inductive bias)

subspace of all
linear interpolators
w: Xw =y =Xw* + ¢}




Varying inductive bias via p € [1,2]

Fixed distribution: y; = (w*, x;) + &; with sparse w*, i.e. [|w|| =k « d, i.i.d. noise ¢ and x; ~ N(0,
P 0

Min-£,-norm interpolation w,, = argmin,, ||W||p s.t.y = Xw

+ Consider overparameterized regime d > n, think of d « nf with g > 1 (high-dimensional)
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Varying inductive bias via p € [1,2]

Fixed distribution: y; = (w*, x;) + &; with sparse w*, i.e. [|w|| =k « d, i.i.d. noise ¢ and x; ~ N(0,
P 0

Min-£,-norm interpolation w,, = argmin,, ||W||p s.t.y = Xw

+ Consider overparameterized regime d > n, think of d « nf with g > 1 (high-dimensional)

« Compare estimators using tight, high-probability, non-asymptotic statistical rates of prediction error

2
= O(h(n,d)) asn - o for some function h |

Ex~n(o,n (xTw, — xTW*)Z = ||Wp —w*|

strong inductive bias <€ no inductive bias
towards sparsity towards sparsity
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« Tight bounds for adversarial noise vectors & but 0(c?) for §; i.i.d. with variance ¢?
[Chinot, Loeffler, vandeGeer '20], [Wojtaszczyk '10]

e Lower bound for i.i.d. noise for sub-Gaussians Q < > [Muthukumar, Vodrahalli, Subramanian, and Sahai '20]
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« Tight bounds for adversarial noise vectors & but 0(c?) for §; i.i.d. with variance ¢?
[Chinot, Loeffler, vandeGeer '20], [Wojtaszczyk '10]

2
e Lower bound for i.i.d. noise for sub-Gaussians Q a_d [Muthukumar,VodrahaIIi,Subramanian,andSahai’ZO]
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Strong inductive bias:p =1

« Tight bounds for adversarial noise vectors & but 0(c?) for §; i.i.d. with variance ¢?
[Chinot, Loeffler, vandeGeer '20], [Wojtaszczyk '10]

2
e Lower bound for i.i.d. noise for sub-Gaussians Q o—_d [Muthukumar,VodrahaIIi,Subramanian,andSahai’ZO]
log(3)
Tight bounds for i.i.d. noise for Gaussi | " _yo(—=
Ignt bounds tor 1.1.d. noise Tor (Gaussian covariates W-I_ (W) [Wang, Donhauser, Yang '22]

for d = nf with § > 1 we obtain the rate 0 (—(ﬁ—Slog n)

Inconsistent

Consistent decreasing statistical bias
<€
but harmful interpolation: p=1 p=2 but harmless
P ' @ rate © (@) = 0(1) rate O(1) interpolation

opt. regularized 0 (k o8 n)
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The problem of p =1 lies in the variance...

Forp =1 and k = 1, "sensitivity to noise” and variance larger than for p = 2

2
2

MSE ||® — w*||

‘ as overparameterization increases, variance decay is slower for p = 1 than for p = 2!
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A bias-variance trade-off for p € [1,2]

strong inductive bias p=1

towards sparsity

Min-£,-norm interpolation w,, = argmin,, ||W||p s.t.y = Xw

A

test error ——» ©

variance

statistical bias

p=2 no inductive bias
rate O(1) towards sparsity



A bias-variance trade-off for p € [1,2]

Min-£,-norm interpolation w,, = argmin,, ||W||p s.t.y = Xw

A

e —— testerror —» ©

\ variance

statistical bias

1 p=2 no inductive bias

strong inductive bias P= :
. 1 rate O(1
towards sparsity rate © (logn) = towards sparsity




A bias-variance trade-off for p € [1,2]

Min-£,-norm interpolation w,, = argmin,, ||W||p s.t.y = Xw

A 74
\ /
‘\ /
. statistical bias
\ /7"
o « y 4
7’ variance
. -
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— " - " mm  mm o .
strong inductive bias =1 ratzze)z(l) :O mcjgmtwe rb!?s
towards sparsity rate © (@) owards sparstty

Trade-off between bias and variance for interpolators via strength of inductive bias!




A bias-variance trade-off for p € [1,2]

Min-£,-norm interpolation w,, = argmin,, ||W||p s.t.y = Xw
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A new bias-variance trade-off for interpolators

Min-£,-norm interpolation w,, = argmin,, ||W||p s.t.y = Xw

test error

statistical bias

variance
~ /
— - — -—,
strong inductive bias p=1 1<p<2a p=2 no inductive b!as
' rate @ (—— rate O(n%) rate ©(1) towards sparsity
towards sparsity logn —1<a<0

Take-away: medium strength of inductive bias is best when interpolating noise
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Nonlinear structure: Rotational invariance for WideResNet

e Satellite images (EUI’OSAT) to be interpolating: == 0% noise — 20% noise
classified in terms of type of land usage

opt. early-stopped: 0% noise 20% noise

17% ] /
12%

B
qt) interpolator 2
+ 8% 7
0
[}
H "/
3% P ————————
0% . I —
: : : . 12 4 1
« strength of rotational invariance via strong : weak
ind. bias # augmented rotations

“amount of” data augmentation ind. bias

Confirmed: medium strength of inductive bias is best when interpolating noise

[Aerni, Milanta, Donhauser, Yang ‘23]



Open: How transferable is this “new” intuition?

«  Proof technique using Convex Gaussian Minmax Theorem [Thrampoulidis, Oymak, Hassibi '15]

with localized convergence?* [Koehler, Zhou, Sutherland, Srebro '21] carries over to classification

[Donhauser, Ruggeri, Stojanovic, Yang '22]
™ open: theory is still incomplete and restricted to Gaussians!

« Intuition carries over to high-dimensional kernel learning with convolutional kernels

where bias and variance vary with inductive bias [Aerni, Milanta, Donhauser, Yang ‘23]

 Preliminary experiments for neural networks also suggest this behavior

for rotational invariance and filter size «__

open: comprehensive experimental NN study!




Plan today...

Part I: For linear regression, we discuss how

* variance can decay as overparameterization increases (simple math)
« Two factors can govern variance decay vs. bias increase
» For fixed interpolator, certain problem instances/distributions are more benign

« Forfixed problem instance, certain interpolators generalize better

Part Il For classification, we discuss the
« effect of loss function choices
» implicit bias of optimization algorithms for neural networks

» generalization of neural networks on noisy, high-dimensional data
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Differences in training loss functions

Logistic loss

Gradient descent
(Soudry et al,
Ji & Telgarsky, 2018)

Hard-margin SVM

Osym = arg min||0||o

subject to
Y;-X,'0>1,i¢€ n].

® Not closed-form
® Linked to MLE under logistic noise

Squared loss

Gradient descent
(Folklore, see e.g.
Engl et al 1996)

Minimum-|2-
norm interpolation

0y = arg min||6||2
subject to
X'0=Y;,ic[n].
® (Closed-form
® |inked to MLE under additive noise
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Differences in test loss functions

Regression: Test MSE Classification: Test 0-1 error

Evse = E [(XT(é\— (9*))2 Eo1 =E []I[sgn(XT@\) + sgn(XTQ*)]

Two core challenges when analyzing classification:

1. Hard-margin SVM does not have a closed-form solution, unlike minimum-I2-
norm interpolation

2.0-1 error metric challenging to sharply analyze as compared to MSE



Plan today...

Part I: For linear regression, we discuss how
« variance can decay as overparameterization increases (simple math)

« Two factors can govern variance decay vs. bias increase
« For fixed interpolator, certain problem instances/distributions are more benign

« For fixed problem instance, certain interpolators generalize better

Part Il: For classification, we discuss the
« implicit bias of optimization algorithms for neural networks

« generalization of neural networks on noisy, high-dimensional data
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binary labels in spiked covariance ensemble if d > nlogn and R < —
n

Conditions for general anisotropic covariances also provided in terms of “effective ranks” in Hsu et al (2021)



One analysis path for 12, step 1: showing that SVM = interpolation

3
e Training data
21 Least norm interpolation
-- SVM
Fourier features | (LU [ N30
. . ,l_,‘slw\,'\ o AL I
on 1-dimensional data, [ > \ ]
<otrop! . ~ ot A A A/ I % d = 1000
ISOTropiC covariance Y !l Y I P
P ~11 fl la [l Hl ‘i
—2 1
SR S—] 0 1 2 3

Result (Hsu, Muthukumar and Xu 2021): hard margin SVM = minimum;|2-norm interpolation on

binary labels in spiked covariance ensemble if d > nlogn and R < —
n

Implication: SVM has a closed-form expression, can be more easily analyzed!

Conditions for general anisotropic covariances also provided in terms of “effective ranks” in Hsu et al (2021)
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One analysis path for 12, step 2: analyzing 0-1 error of interpolator

_= Spiked covariance: (n, d, k, R)
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[Muthukumar, Narang, Subramaniam, Belkin, Hsu, Sahai JMLR'21]
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Takeaways for classification with 12-minimizing solutions
- Different training loss functions could yield similar or even identical
solutions
« Classification 0-1 test loss is much more benign than regression MSE; so

|12-inductive bias could work better for classification tasks



Plan today...

Part I: For linear regression, we discuss how
» variance can decay as overparameterization increases (simple math)

« Two factors can govern variance decay vs. bias increase
« For fixed interpolator, certain problem instances/distributions are more benign

« For fixed problem instance, certain interpolators generalize better

Part Il: For classification, we discuss the

« effect of loss function choices
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Benign overfitting in neural networks

Most theoretical works on benign overfitting focus on linear/kernel setting.

We'll discuss recent works in neural networks and open questions.

Notably: all results on benign overfitting in neural nets require ambient dimension
d>n

e Very unsatisfying: neural nets can be overparameterized in d < n regime, when is
overfitting benign in this setting?



Which estimators do we care about?

Model Algorithm Setting Estimator

Linear Gradient descent | Classification l5 max-margin
Linear Gradient descent | Regression | ¢, min-norm interpolator
Linear Adaboost Classification {1 max-margin
Linear Basis pursuit Regression | /1 min-norm interpolator

Neural nets
Neural nets

Gradient descent
Gradient descent

Classification
Regression

?



Which estimators do we care about?

Model Algorithm Setting Estimator
Linear Gradient descent | Classification l5 max-margin
Linear Gradient descent | Regression | ¢, min-norm interpolator
Linear Adaboost Classification {1 max-margin
Linear Basis pursuit Regression | ¢; min-norm interpolator
Neural nets | Gradient descent | Classification ?
Neural nets | Gradient descent | Regression

e Next: implicit bias of GD in neural net classification.

e After: "trajectory analysis”, directly analyzing properties of neural nets trained by
GD

Telgarsky'13, Soudry-Hoffer-Nacson-Gunasekar-Srebro’18, Ji-Telgarsky'18, ...
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Implicit bias in neural networks

e Which interpolators do we care about for neural nets?
e We'll focus on classification tasks, training by GD/GF on logistic loss.
e Very little known about implicit bias of GD for neural nets in regression setting.

Theorem

For large class of neural nets, if GD/GF 6(t) reaches a small enough loss, then 6(t)

converges in direction to a first-order stationary point (KKT point) of the £2-max margin
problem,

min[|]* st yif(zi;0) > 1, Vi € [n]. (1)

e KKT point does not imply even local optimality in general.

® In general, very little is known about KKT points of (1).

Lyu-Li'20, Ji-Telgarsky'20
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Implicit bias in neural networks

e A setting where we understand KKT points of max-margin: two-layer
leaky ReLU nets with nearly-orthogonal data. (¢(q) = max(vyq, q))

fla;0) = 3250 a;0((05, ), a; € {+1/v/m}, R

o > mmax| (@, )|

Q.

2a

e Satisfied in many settings w.h.p. when d > n? and (z;,y;) '~ P (e.g., @ ~ N(0, 1))

Theorem

Suppose data is | nearly orthogonal ‘ If 6 satisfies KKT conditions for £2-max-margin, then
ds; > 0 s.t.

foranyz € RY,  sgn(f(z;0)) = sgn((X1; siyizi, z)),
where s; > 0 satisfy max; ; si/s; = O(1).

Frei-Vardi-Bartlett-Srebro-Hu'23
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Implicit bias in neural networks

Theorem

Suppose data satisfies | ||z;]|*> > n r]rg;x |(z;, )| . If 6 satisfies KKT conditions for
J

£2-max-margin for 2-layer leaky nets, then 3s; > 0 s.t.

for any z € R, sgn(f(z;0)) = sgn (X1, sivizi, x)),

where s; > 0 satisfy | maxsi/s; = O(1).
Z7J

e Although two-layer nets are universal approximators, KKT points for margin
maximization have linear decision boundaries under‘ near-orthogonality |

e Decision boundary is very simple, | = uniform average of data. ‘

® Linear model can capture behavior of nonlinear net, trained beyond NTK.
Frei-Vardi-Bartlett-Srebro-Hu'23
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® Near-orthogonality typically holds in low-SNR, d >> n settings, e.g. mixture model:
g~ Unif({£1}), x=gu+z 2~N(0,14), y=-7w.p.p.
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Benign overfitting of neural nets in mixture model

KKT points for 2-layer leaky nets &~ Y"1 | y;x;, when training data is

nearly-orthogonal | (||z;]|* > nr?;x (zj,zK)]) |
j

+
+
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Near-orthogonality typically holds in low-SNR, d > n settings, e.g. mixture model:
g~ Unif({£1}), x=gu+z 2~N(0,14), y=-7w.p.p.

if || u]l = O(d/?) and d > n?.

Following results will only hold in this low-SNR, high-dimensional regime
® We'll see consistency is still possible in this setting
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Theorem (informal)

Suppose labels flipped w.p. p < 1/2, low SNR and d > n?. Then w.h.p., any KKT point 6 of
2-layer leaky RelLU net ¢3-max-margin problem satisfies

] Vk e [nl, wyk=sgn(f(zk;0))
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Benign overfitting of neural nets in mixture model
g~ Unif({£1}), x=gu+z 2z~N(0,1z), y=-—7w.p.Dp.
Theorem (informal)

Suppose labels flipped w.p. p < 1/2, low SNR and d > n?. Then w.h.p., any KKT point 6 of
2-layer leaky RelLU net ¢3-max-margin problem satisfies

’ Vk € [n], yr =sgn(f(zk;0))

, and |p <P(y #sgn(f(z;0)) <p+exp <—Q<n||d“||4>) :

® No dependence on number of neurons in network.

o : perfectly fit training data, even though = pn labels are flipped

o ‘ Benign H overfitting ‘: if n||p||* > d, test error &~ noise rate.

* Low-SNR requires ||u|| = O(d"/?), so results hold for ||u|| = ©(d®) for e € (1/4,1/2)
o exp(—Q(nl|u||*/d)) is minimax-optimal!
Frei-Vardi-Bartlett-Srebro’23
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Benign overfitting of neural nets in mixture model
Recall sgn(f(z;6)) = sgn({>_1_, vizs, ). What does this estimator look like? Since z;; = g+ z;,
Do Yiti = D e ctean Ji (Tt + 21) + Xicnoisy —Ji(Fitt + 2i)
= (|clean| — |noisy|) u + 377, Fizi
~(=2pn-p+ 3L iz

signal overfitting component

Overfitting component’ helps interpolation |, signal helps :
Training data |: classify (z;,y;) correctly : classify (z, g) correctly

(yixi, yory Yizi) is large, positive, (G, > §iz;) is small, random =+,
(yizi,np) is small, noisy labels make +. (gz,np) is (optimally) large, positive.

e Signal and overfitting component balanced to allow both interpolation + generalization



Other approaches for benign overfitting in neural nets

* Analysis of implicit bias (KKT conditions, minimum norm interpolation, ...)
Frei-Vardi-Bartlett-Srebro’23; Kornowski-Yehudai-Shamir'23; Kou-Chen-Gu'23; ...
® Kornowski-Yehudai-Shamir'23 look at local and global minima of
margin-maximization problems (rather than just KKT points)
® Only applies to co-time limit of training



Other approaches for benign overfitting in neural nets

* Analysis of implicit bias (KKT conditions, minimum norm interpolation, ...)
Frei-Vardi-Bartlett-Srebro’23; Kornowski-Yehudai-Shamir'23; Kou-Chen-Gu'23; ...
® Kornowski-Yehudai-Shamir'23 look at local and global minima of
margin-maximization problems (rather than just KKT points)
® Only applies to co-time limit of training
e “Trajectory analysis”: directly track the weights of neural net trained by GD/GF
from random initialization on noisy data, show that it achieves small train and test
error Frei-Chatterji-Bartlett'22; Xu-Gu'23; Kou-Chen-Chen-Gu ICML'23; Xu-Wang-Frei-Vardi-Hu'23; Meng-Zou-Cao'23; ...
® Characterizes finite time performance
® More narrow, less clear “why"” benign overfitting happens
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e Directly examine inductive bias of training by GD/GF, e.g. in 2 layer nets
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Benign overfitting from trajectory analysis

e Directly examine inductive bias of training by GD/GF, e.g. in 2 layer nets

Fla;0) =3 a;6((05,2)), L(0) = L300 0(f(xi:0)),

n

Z Fai0D)) -4V f(4500).

o+ — 9 — VL (eW) =

B\Q

e Tasks:
* Analyze weights #() and empirical risk L(#®") (training example margins y; f (z;; 0®))
® Track test error P(y # sgn(f(x;0™)) (test example margin yf(x; 0®1)))
® These two must be very different for benign overfitting to occur



Benign overfitting from trajectory analysis
Y~ Unlf({il})a r=yp+z, z~ N(():Id)a Yy =—Yy w.p.p.
Theorem

Suppose labels flipped w.p. p = O(1), low SNR and d >> n?. Then when training a two-layer

leaky ReLU network by gradient descent (w/ appropriate random init 6(°), learning rate), for all
t>1,

L(6©) < 00| and |p <P+ sgn(f(:6")) < p+exp (~Qnlpll*/d)) |
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Benign overfitting from trajectory analysis
g~ Unif({£1}), z=gu+z 2~N(01ls), y=—Fw.p.p.
Theorem

Suppose labels flipped w.p. p = O(1), low SNR and d > n?. Then when training a two-layer

leaky ReLU network by gradient descent (w/ appropriate random init 6(°), learning rate), for all
t>1,

L™y <o)

, and | p<P(y#sgn(f(z;:6)) < p+exp (—Q(nllu]*/d)) |

® No dependence on number of neurons in network.

° ‘ Benign H overfitting ‘ if tis large and n|u||* > d.

® Same generalization bound as KKT analysis, but now holds throughout GD trajectory.

® Only tolerates p = O(1), rather than p < 1/2 from KKT analysis.

Frei-Chatterji-Bartlett'22; Xu-Gu'23
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® Since —{' is decreasing, implies noisy labels could have outsized influence on training
dynamics — hard for overfitting to be ‘benign’
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e Difficulty arises: “clean label” examples (in principle) are easier, larger margin y; f (z;; ),
while “noisy label” examples harder, smaller margin

® Since —¢ is decreasing, implies noisy labels could have outsized influence on training
dynamics — hard for overfitting to be ‘benign’

® Key technical lemma shown in most trajectory analyses: ‘ loss ratio bound |,

0 (y; f(2;00))
Sup max
tzg g =l (y; f(x;;00))

= 0(1).



Benign overfitting from trajectory analysis
F(2:60) = 3270 a;o((65,2)), L(O) = 1 307 £(f(2656)),

O+ — 9 — _aVL(eY) Z 0 (i f (235 0D)) -y V f (w35 0D).
\—v—/

|u

e Difficulty arises: “clean label” examples (in principle) are easier, larger margin y; f (z;; ),
while “noisy label” examples harder, smaller margin

® Since —¢ is decreasing, implies noisy labels could have outsized influence on training
dynamics — hard for overfitting to be ‘benign’

® Key technical lemma shown in most trajectory analyses: ‘ loss ratio bound |,

0 (y; f(2;00))
Sup max
tzg g =l (y; f(x;;00))

= 0(1).

® Known proofs all rely on nearly-orthogonal data (d >> n) to show this

Chatterji-Long'21; Frei-Chatterji-Bartlett'22
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"Blessing of Dimensionality”

n =100, d = 10,000, m = 512

0.5
® d/n — oo necessary for benign overfitting in linear 04
models, but unknown if necessary for neural networks. 502

= = Test

®0.2 = Train

e Consider again the Gaussian mixture model, with
p = 0.15 labels flipped (train and test), m = 512 ot \-\

0.0
neuronsl va ry d/n le+01 1le+03 le+05 1le+07
. . . . . step
¢ Learning dynamics differentin n > d setting; n=10,000, d = 100, m = 512
overfitting less ‘benign’ o
— "Blessing of dimensionality”? seeaiso: 04
- 0.3
[Kornowski-Yehudai-Shamir'23] S =
®0.2 f = Tan
0.1 \‘
\
0.0 -

le+01 1le+03 1le+05 1e+07
step
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Benign, tempered, and catastrophic overfitting

e There is a spectrum of generalization behavior when
overfitting.

® let R, be test error for interpolator (train error = 0)
using n samples, R* best possible test error.

Regression Binary Classification
Benign lim R, = R* lim R, = R*
n—oo n—oo
Tempered Ii_)m R, € (R*,00) Ii_)m R, € (R*,1/2)
Catastrophic ILm R, =0 ILm R, =1/2

¢ Neural net trained on high-dimensional mixture
model: (provably) benign; low-dimensional:
tempered?

Mallinar-Simon-Abedsoltan-Pandit-Belkin-Nakkiran'22

n =100, d = 10,000, m = 512

= Test
= Train

Y

le+01 1le+03 le+05 le+07
step

n =10,000, d =100, m = 512

le+01 1le+03 1le+05 1e+07
step
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Open questions

* |s benign overfitting in neural nets possible in low dimensions (n > d)?
® Overparameterization through wider nets could help, but does it? When? Why?
e Which neural net interpolators do we care about in regression?
¢ Necessary and sufficient conditions for benign overfitting in linear classification?

* Fairly complete picture of min-¢2 linear regression, but mostly sufficiency guarantees
in classification.
® Dream: data-dependent, signal-dependent, tight guarantees.



Thanks!
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